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SUMMARY

A reduced-order control law is synthesized by minimizing a performance
index defined by a weighted sum of mean-square steady-state responses and con-
trol inputs, as in a stationary linear quadratic Gaussian (LQG) analysis. The
order of the control law is assumed to be less than the order of the plant.
Gradients of the performance index with respect to the design variables in the
reduced-order control law are determined by solving a pair of Lyapunov equa-
tions. An analogy with the LQG solution is utilized to select a set of design
variables and their initial values. Using the gradients, a nonlinear program-—
ing algorithm searches for the control law design variables which minimize the
performance index. During the design cycle, an input-noise adjustment pro-
cedure is introduced to improve the system's stability margins. Thus an
optimal, reduced-order, robust feedback control law can be synthesized without
truncating the plant model order.

This control law synthesis method was applied to the synthesis of an
active flutter-suppression control law for a wind-tunnel model of an aero-
elastic wing represented by a 25th-order plant. The resulting fourth-order
control law is shown by analysis to increase the flutter dynamic pressure by
at least 44 percent with good stability margins, while minimizing the control
input. Although theoretically proven only for a full-order controller, the
input-noise adjustment procedure also improved the phase and gain margins for
the reduced-order controller. Fourth-order control laws were also obtained
by truncation and residualization methods, and results of these control laws
were compared with those of the present reoptimization method. The study
indicates that by using the present algorithm, nearly optimal low-order con-
trol laws with good stability margins can be synthesized.

INTRODUCTION

The state—space equations describing control problems involving flexible
structures are usually of high order. This characteristic is particularly true
for an aeroelastic system (plant) which requires a large number of states to
accurately represent the flexible structure, unsteady aerodynamics, and actuator
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dynamics (refs. 1 to 3). The order of a realistic design problem could be 60 or
more (refs. 1 and 4). BAn optimal feedback control law based on the standard
linear quadratic Gaussian (LQG) solution would be of the same high order as the
plant. This control law (controller) is usually very sensitive to modeling
errors, has poor stability marging, and often is too complex to implement in a
flight computer. 1In this paper, a method is developed using optimization tech-
niques for designing a reduced-order control law without these disadvantages.

Reduced-order control laws have been designéd using transfer function
matching, modal truncation, and residualization techniques (refs. 4 to 6).
These methods only approximate the full-order controller, and the resulting con-
trol law is no longer optimal. In the present approach, the control law is
synthesized by minimizing a performance index defined by a weighted sum of mean-
square steady-state responses and control inputs as in a stationary LQG analysis.
However, the order of the control law is assumed to be less than the order of
the plant. Gradients of the performance index with respect to the design vari-
ables of the reduced-order control law are determined by solving a pair of
Lyapunov equations. Using the gradients, a nonlinear programing algorithm
searches for the design variables which minimize the performance index. The
basis of this reduced-order controller design procedure is described in refer-
ences 7 and 8 and has been applied in reference 9 for attitude control of a
flexible spacecraft.

Two problems arise when applying this general method: selection of a set

of design variables and their initial values which result in a stable system.

In the present paper, a new systematic approach is developed to overcome both
problems. The design variables of the reduced-order controller are chosen so
that they are analogous to the optimal full-state feedback and Kalman estimator
gain matrices. These full-order optimal gain matrices are used for choosing the
initial values of the design variables. 1In the limit when the order of the con-
troller is the same as the order of the plant, the algorithm provides a solution
which is identical to the optimal LQG results.

In general, plants using observer-based control laws exhibit poor stability
margins. Recently, Doyle and Stein (ref. 10) presented an input-noise adjust-
ment procedure to improve the stability margins of full-order LQG control laws.
This procedure is used in the present design algorithm. Results indicate that
the procedure can improve the stability margins of the system with a reduced-
order control law, although the theoretical proof exists only for a full-order
control law.

The method of this paper is then applied to the synthesis of a 4th-order
flutter-suppression control law for a wind-tunnel model of an aeroelastic wing,
represented by a 25th-order plant. The performance of the flutter-suppression
system (FSS) using the reduced-order (4th-order) control law is analyzed and
compared with the performance using the corresponding full-order (25th-order)
control law. A comparison of results using fourth-order control laws obtained
by truncation and residualization methods is also presented.




EQUATIONS OF MOTION IN STATE~-SPACE FORM
Plant Model

The equations of motion for an aeroelastic system can be written (refs. 2
and 3) as

(6952 + [osJe + BO)ER) + q[?z}{f,i} - <[

where
hﬂ generalized mass matrix
[bs] structural damping matrix
[K] generalized stiffness matrix
s Laplace variable
EF'EC generalized coordinate vectors for flexible modes and
for control surface deflections
EG gust velocity vector
q dynamic pressure
v free-stream velocity

(The symbols used in this report are listed after the references on page 36.)

The s-plane approximations of the unsteady aerodynamic forces [Q] and [Q]G
are expressed as

[Q] = [AO] * [Alk%) * [’ﬂ(%) +Z <S—+§—m> (2)

o] reference chord length




[T

L number of aerodynamic lag terms

Bm aerodynamic lag

The real coefficient matrices P%J and P%J relate unsteady aerodynamics in

the frequency plane to the approximating functions in the s-plane. Unsteady
aerodynamic forces on the wing and control surfaces due to sinusoidal motion

and gust are generated herein using doublet lattice aerodynamics (ref. 11). By
denoting the flexible modes, their time derivatives, and the aerodynamic lag
terms within the summation sign in equation (2) by the state variable vector x*,
equation (1) and an accelerometer sensor output equation can be expressed in
state-space form (see appendix A) as

fkx} = [F*]{x*} + [G; ! G;]{u*} (3a)

* * 1 * (3b)
{y} = [Hl]{x*} + [Hz : H3]{u*}

where
F* dynamics matrix (see eqs. (A7))
* *
Gl,G2 input matrices (see egs. (A7))
* * * .
Hl’HZ’HB measurement matrices (see eqgs. (A9))

and the state vector and input vector are

T
T ':T T ! T ! ! T
x* = EF | EF | xé . xé e - - xé
t | 1 2 1 L
| l ! | 1 T
T . T = T T - T - T
* = ] | | 1 '
v 2 , &c \ & R S
where xé are aerodynamic states (eq. (A3)). As shown in appendix A, the

m
derivative terms in u* can be eliminated by augmenting x* with a model of
the control surface actuator dynamics and a model of the turbulence. The state-
space model of the plant can then be written in the standard form as

X, = Fxg + Gyu + Guw (4)
y = HXs + v (5)



where

X augmented plant state vector composed of x*, actuator states, and
turbulence states (Ng X 1)

u control input vector (Ng X 1)

\ plant noise vector (Ny X 1)

v measurement output vector (Ng X 1)
v measurement noise vector (Ng X 1)
¥p design output vector (Np X'1)

and the matrices in equations (4) to (6) are defined in equations (Al6), (Al7),
and (Al9). The noise vectors w and v are modeled as zero-mean white noise
processes with intensity matrices R, and Ry, respectively.

Controller Model

A block diagram of the control scheme is shown in figure 1. The controller
model is assumed to be

X, = AXc + BY (7)

u = Cxqo (8)

where X. represents the controller state vector of order M where M X Ng.

The terms A, B, and C are controller dynamics, input, and output matrices of
size M X M, M X Ng, and Ng X M, respectively. Of the M(M + Ny + Ng) ele-
ments of the A, B, and C matrices, only M(Ng + No) are independent

(ref. 12) and can be chosen as free design variables. Egquation (7) represents

a filter which processes the output measurements before being fed back through
the gain matrix C. Together, equations (7) and (8) represent a transfer func-

-1
tion relation u = C[éI - AJ By which is commonly referred to as an output
feedback control law.

CONTROL LAW SYNTHESIS METHOD

The control law is synthesized by minimizing a performance index defined by
a weighted sum of mean-square steady-state responses and control inputs, as in a
stationary LQG analysis. However, the order of the control law is assumed to be
less than the order of the plant. Gradients of the performance index with
respect to the design variables in the reduced-order control law are determined
by solving a pair of Lyapunov equations. An analogy with the LQG solution is




utilized to select a set of design variables and their initial values. Using
the gradients, a nonlinear programing algorithm searches for the control law
design variables which minimize the performance index. During the design cycle,
an input-noise adjustment procedure is introduced to improve the system's sta-

bility margins (robustness).

Augmented State Equations

By defining an augmented state vector

Xs
Xz = ;; (9)

the closed-loop system is represented by

o\ _ e SCES\ 1 to))w 10)
) BE ' A [\xc o 'Bf\v
Xa 1 ]

X = F.x +  Ggn

or

If F5 is stable with the chosen values of A, B, and C, the covariance of
X5 reaches a steady-state value which satisfies the Lyapunov equation given by

T T
FoXy + X F; = =G4R,G5 (11)
where
Xe | X
= lim T = v _=¢ 1
Xa = AWM ElxaXy" | = =m0 (12)
XSc | C
and
R |
W 0
Ry = |== ! =- (13)
0 | Ry
6




Performance Index

The control law is synthesized using a conjugate gradient algorithm
(ref. 13) to search for the M(Ng + No) design variables of the Mth-order
control law (eqgs. (7) and (8)) which minimize a performance index J defined
by

= i T T
J = %ig E[?D Qivp + u Qzﬁ]

tr {(HDTngD>xS} + tr [QZU] (14)

where Q and Q are symmetric weighting matrices and X and U are
1 2 s

steady-state covariance matrices of the states xg and control inputs u,

respectively. Substituting equation (8) into equation (14) and using the
definitions given by equations (9) and (12) result in

T | 1
H_Q.H X X
1 s | “sc
J = tr —1—)—61--]3 | -E‘Q—— _—_E‘ | }—(—— = tr[QaXa] (15)
c
, C Q2C Xsc |
Gradients

It is shown in appendix B that the gradients of J with respect to the
elements of the matrices A, B, and C can be expressed as

%‘% = 2[ASCTXSc + Acxc] (16)
g_‘; =2 (ASCTXS + ACXSCT)HT + ACBRV] (17)
% = 2{QyCX. + GuT(AsXSC + Ascxc)] (18)




where A is a (Ng + M) X (Ng + M) symmetric Lagrange multiplier matrix
defined as

[

A= |--S- v -5C (19)
1
I

which satisfies the dual Lyapunov equation

F A+ AF, = -0, (20)

Design Variables

There are several possible ways of selecting a set of M(N, + N.) free
design variables of the control law (eqs. (7) and (8)). 1In a canonical form
of the control law, the coefficients of numerator and common denominator poly-
nomials can be identified as the design variable set. 1In a block diagonal
form, the real and imaginary parts of the controller poles and numerator resi-
dues can be taken as the design variable set. While these representations can
be incorporated into the present algorithm (to optimize an existing control law
in transfer function form), they are not very general and are often inconvenient
from a matrix bookkeeping point of view. Also the initial values of the design
variables can be difficult to estimate. In the present method the M(Ng5 + Ng)
elements of B and C are chosen as the free design variables and a subset of
the Kalman estimator gain and optimal full-state feedback gain matrices obtained
from the LOG solution are chosen as their initial values. The justification is
as follows.

If for a full-order controller (M = Ng), we let A =F - BH + GyC and use
the elements of B and C as design variables, then it is shown in appendix C
that the optimized values of B and C are identical to the steady-state
Kalman estimator gain and optimal full-state feedback gain matrices, respec-
tively. The controller states x. are identified as the asymptotic estimates
of the plant states xg. By analogy, when M < Ng, the low-order controller
may be treated as a partial estimator of M key states denoted by X1 = Rxg
(R is a Boolian matrix of order M X Ng). A full discussion of this approach
and the asymptotic behavior of the estimation error is presented in appendix D.

Thus we initially set

A= R(F - BH + GCoIR (21)
B = RB, (22)
C = CoRT (23)



where M key states are chosen for estimation. The matrices By and Cp are
the full-order Kalman estimator and optimal full-state feedback gain matrices,
regpectively. Subsequently,

A = RFR’ - BHR' + RG,C (24)

Since A is a function of B and C, the total gradients of J with respect
to B and C are given by

(25)

Substituting the partial gradients from equations (16) to (18) in equations (25)
results in

_ )
aJ T T\ T T T
= - 2 (Asc Xg + A X )H - (ASC XKoo + ACXC)RH + A_BR,,
) (26)
aJ J T T T
aC = 2|92C%c + Gy (Asxsc + Ascxc> + (RGu) <ASC Xoo + ACXCH

With the performance index J and its gradients known, a conjugate gradient
optimization procedure (ref. 13) can be used to minimize J. The (Ng + M)th
order Lyapunov equations are solved by a program described in reference 14.
This process is feasible only if F, is a stable matrix for each iteration.

Robustness Recovery Technique

Plants using full-order LQG controllers usually exhibit poor stability
margins. It has been shown in reference 10 that by introducing a fictitious
input noise T; of intensity Ry, in equation (8) (the noise is not included in
the performance index directly) and by increasing Ry by a scalar factor, the
full-order controller system loop transfer function (loop broken at u) asymptot-
ically approaches the corresponding full-state feedback loop transfer function
(and hence they have the same stability properties). This input-noise adjust-
ment procedure is incorporated in the present reduced-order controller design
process by replacing G, and w in equation (10) by E;l : Gw] and

|
Ehf?l wT] , respectively. Consequently, R, in equation (13) is replaced by




The resulting effect is an additional noise term GuRuGuT in the first Ng X Ng

sets of Lyapunov equation (11). In appendix D, it is shown that N, appears as
an additional noise parameter in the partial state estimation error dynamics.
Although not proven theoretically, numerical results show that this input-noise
adjustment procedure is also capable of improving stability margins of the plant
with a reduced-order controller. The input-noise intensity matrix R, becomes
a major design parameter in this controller synthesis technique.

Design Algorithm

A block diagram of the design algorithm is shown in figure 2. The design
algorithm consists of the following steps:

1. Obtain B, and Cg,.
2. Select M key states (matrix R).

T T
3. Compute RFR', RG,;, HR', B = RBg, and C = CORT.

4. Set A = RFR' - BHR' + RG,C.

5. Test F, for stability.

6. If F,; 1is stable, solve Lyapunov equations (11) and (20) for X,
and A.

7. Compute J, dJ/dB, and dJ/dcC.

8. Obtain the next set of B and C by a conjugate gradient algorithm.

9. Repeat steps 4 through 8 with new values of B and C wuntil J
converges to a minimum value.

In step 2, it is often convenient to transform the plant state equations to a
block diagonal form for easier selection of key states to be estimated. If F,
is initially unstable in step 5, then either select a new set of states or
select a new value of R, and return to step 1, until a stable F, is obtained.
If F5 Dbecomes unstable during a linear search in the optimization process, the
algorithm automatically searches in a new direction from the last stable Fj,
solution.

APPLICATION TO FLUTTER SUPPRESSION
Model Description

The control law synthesis method described in the previous sections is
applied to the synthesis of an active flutter-suppression control law for an
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aeroelastic wind-tunnel model. The geometry of the cantilever wing model, along
with the control surface and sensor (accelerometer) locations, is shown in fig-
ure 3. The model is described in detail in reference 1. The state-space equa-
tions are derived using five flexible modes and two aerodynamic lag terms (L = 2,
B1 = 0.225, By = 0.5). BAll structural damping is assumed to be zero. The

actuator dynamics are represented by a third-order transfer function given by
(ref. 1):

[l

&1a

(214) (89 450) deg
(s + 214) (s2 + 179.45s + 89 450) deg

(27)

A turbulence model represented by the following second-order transfer function
is used to approximate a Dryden gust spectrum:

s X
Eg LAV 2\3
w = > (m/sec) \[sec (28)
(s+g)
where
Owg root-mean-square (rms) gust velocity, m/sec
2 scale of turbulence or characteristic length, m
v flight velocity, m/sec

For numerical calculation £ = 30.48 m and Owg = 1. The resulting plant model

is a single-input single-output system of order 25. The input u is the actu-
ator command signal Gc and the output vy is the accelerometer signal Z. The
dynamic-pressure root locus at Mach 0.9 is shown in figure 4 without the flutter-
suppression system. Flutter is predicted at a dynamic pressure of 4.7 kPa and a
frequency of 50 rad/sec. The present objective is to design a low-order control
law which will increase the maximum operating dynamic pressure by 44 percent
above the experimental flutter dynamic pressure of 5.32 kPa (ref. 1), with mini-
mum control surface activity and adequate stability margins. The control law
design point is thus chosen to be a dynamic pressure of 7.66 kPa at Mach 0.9.

Control Laws

Full-order control law.- For comparison purposes, the full-order control
law, which is identical to the LOG solution, is obtained first. The design out-
put matrix Hp is chosen to be the same as the sensor output matrix H. The
weighting matrices, which are scalars for this single-input single-output sys-
tem, are selected to be Q1 = 0.0001, Qo = 50 000, Ry = 1.0, and Ry = 1.0.
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This choice of weighting nearly reflects the unstable pole about the imaginary
axis without affecting the stable poles. The unit plant noise intensity matrix
Ry results in unit rms gust velocity in equation (28). The control laws are
designed at three values of Ry, namely O, 0.00001, and 0.0001. Numerical val-
ues of all these parameters were chosen on the basis of some preliminary results
obtained with a 20th-order plant model (ref. 15). To determine the improvements
in the control law designed with increasing Ry, the phase and gain margins of
the plant plus the control law are determined. The Nyquist diagrams of the
plant with the full-order output feedback control- law, presented in figure 5,
show a progressive increase in phase and gain margins. As predicted in refer-
ence 10, the Nyquist diagram asymptotically approaches the full-state feedback
result which is a circle of unit radius centered at (-1,0). The price paid is
an increase in the optimal design performance index J and associated increases
in rms values of the input and output (table I). The closed-loop dynamic-
pressure root locus using the full-order control law designed with Ry = 0.00001
is presented in figure 6. The flutter dynamic pressure is increased to 9.0 kPa.
Beyond this point, the control law complex pole (filter mode) is unstable.

Fourth-order control law.- Fourth-order control laws were synthesized by
selecting the first two flexible modes and their time derivatives as the four
key states. The initial values of the gain matrices B and C were obtained
from the full-order results. In transfer function form, the control laws
designed with the three values of Ry are, respectively

(-364.4) (s - 136.4) (s2 + 73.69s + 5697)

-% = 5 - deg/g unit (Ry = 0) (29)
at (s + 2.057) (s + 2057) (s° + 46.37s + 2047)

1939.4 + 24.74) (s2 + 87.63s + 13 806 .
u_J ) (s 74) (s s + 13 806) 4eq/g unit (Ry = 0.00001) (30)
z (s + 3.864) (s + 3270) (s2 + 20.97s + 1423)

1424.6 + 31.9 2 4+ 100.0s + 12 210 )
= ( ) (s 0) (s~ $ * 12 210) geg/g unit (R, = 0.0001) (31)

z (s + 1.798) (s + 2541) (s? + 17.76s + 1547)

Figure 7 shows a typical convergence pattern of the performance index
obtained in the course of synthesizing control law (eq. (30)). Convergence is
assumed when the change in the performance index is less than 0.1 percent of its
initial value for three successive iterations. Most of the reduction in the
performance index is achieved in the first few iterations. The optimized per-
formance index is within 16 percent of the full-order controller performance
index.

The Nyquist diagrams of the plant plus fourth-order controllers given by
equations (29) to (31l) are presented in figure 8. With the control law designed
without input noise (eq. (29)), the stability margins are poor and relatively
unaffected by controller order reduction. Although theoretically proven only
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for a full-order controller, it is interesting to note that the input-noise
adjustment procedure of reference 10 is also capable of improving the phase

and gain margins for a reduced-order controller. For a given Ry, reducing the
controller from full order to fourth order results in only a slight degradation
(increase) in the optimal design performance index J (table I).

As a compromise between better stability margins and lower control surface
motion ({(deflection and deflection rate), the controller given by equation (30),
i.e., designed with R; = 0.00001, was selected for overall performance analysis
and comparison. The dynamic-pressure root locus using the fourth-order optimal
control law of eguation (30) is shown in figure 9. The closed-loop flutter
dynamic pressure is 8.7 kPa. Beyond this point, the controller complex pole
(filter mode) is unstable. A Bode plot of the plant plus this control law is
presented in figure 10 and compared with the corresponding plot for the full-
order case. The plots compare quite well up to approximately 400 rad/sec. A
sharp drop in amplitude at 400 rad/sec for the fourth-order case is due to a
zero in the plant (E/Gc) transfer function. For the full-order case, this sharp
drop in amplitude is removed by cancellation of the plant zero by a controller
pole.

The lowest order of the controller obtained in the course of this study is
four. Higher order controllers are possible but do not result in substantial
performance improvement.

CONTROL LAW PERFORMANCE

In this section, the performance of the fourth-order controller designed
with Ry = 0.00001 (eqg. (30)) is discussed and compared with the corresponding
full-order (LQG) controller.

Flutter Characteristics

The dynamic-pressure root locus diagrams of the plant with the full 25th-
order controller and 4th-order controller (eg. (30)) are presented in figures 6
and 9, respectively. The first two modes and the controller complex pole
(filter mode) are less damped for the fourth-order controller than for the full-
order controller, at dynamic pressures of 7.66 kPa and lower. The higher modes
remain relatively unaffected by both control laws. With the full-order control-
ler, the flutter dynamic pressure is increased by 91 percent (from 4.7 kPa to
9.0 kPa), whereas with the fourth-order controller, the increase is 85 percent
(to 8.7 kPa). Thus, the flutter-suppression performance deterioration due to
this reduction in controller order is only 6 percent. In both cases, beyond
the flutter point, the controller complex pole is unstable at a frequency of
40 rad/sec.

Stability Margins

To examine the stability margins of the plant plus the control laws at off-
design dynamic pressures, the phase and gain margins of this single-input
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single-ocutput system were computed over a range of dynamic pressures up to the
design value (7.66 kPa) and are presented in figure 11. With the fourth-order
controller at the design dynamic pressure, the gain margins are -5 dB and
+12.3 dB. The phase margins are -46° and +53°. The closed-loop system is
stable over the entire range of dynamic pressures, and a *5 dB gain margin and
+30° phase margin are maintained over the dynamic-pressure range from 5.7 kPa
to 7.66 kPa. This provides a measure of insensitivity of the designed active-
control system to dynamic-pressure variation. Except for the positive phase
margins which fall below +30° at dynamic pressures of 5.7 kPa and lower

(fig. 11), all the other margins improve with decreasing dynamic pressure.
Since the stability margins with the full-order controller also exhibit almost
the same characteristics (shown by dashed line in fig. 11), the deterioration in
positive phase margin is not due to the controller order reduction.

Steady-State Response

Table I presents the steady-state root-mean-square (rms) responses of the

control input Uuypg, control surface deflection Symgs deflection rate Syms
and sensor output Erms at the design dynamic pressure using the fourth-order

controllers (egs. (29) to (31)) and corresponding full-order controllers. These
values were obtained by setting R, = 0 and executing the usual covariance
analysis with the optimized control law. With the fourth-order controller

designed with Rj = 0.00001 (eq. (30)), 6rms and 5rms are 17.0° and

756.0 deg/sec, respectively (all calculations performed for a 1 m/sec rms gust
velocity). The respective values with the corresponding full-order controller
are slightly higher. These values are in the vicinity of the typical maximum
allowable limits.

To examine the steady-state Grms' érms' and Erms at off-design dynamic
pressures, their values normalized by their design-point values are presented
in figure 12 for the fourth-order controller designed with Ry = 0.00001
(egq. (30)). These responses are computed with R; = 0 and Ry = 0 and are
slightly lower than those with R, = 1.0. Figure 12 indicates that for dynamic

pressures below the design point, &,., 6., and érms are consistently
lower than their design-point values except for 2z, at 6.7 kPa which is

2.6 percent higher. The deterioration of positive phase margin at lower dynamic
pressures (fig. 11) does not adversely affect the system steady-state response.

Transient Response

The present design technique is based on minimizing the system input and
output at steady state. Therefore, it is important to check the transient
response with the designed controllers. The state transition matrix technique

(ref. 14) was used to determine &, &, and z responses to a 1° step pulse of
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0.0l-second duration as an input command for the full- and fourth-order control-
lers at the design dynamic pressure. These responses are shown in figure 13.

The responses using the fourth-order controller are quite similar to those
using the full-order controller and decay rapidly in a few cycles. The peak

values are 6 = 1°, & = -200 deg/sec, and =z = 0.6g, respectively. These are
somewhat higher than values for the full-order controller. The lower damping of
the plant with the fourth-order controller is consistent with the earlier obser-
vation from the root-locus diagrams (figs. 6 and 9).

Performance With 65th-Order Plant Model

The 4th-order controller of equation (30) was designed using a 25th-order
state-space model of the plant obtained using five flexible modes and two aero-
dynamic lag terms. In order to examine the performance of this control law with
a more accurate state-space model of the plant, it was applied to a 65th-order
plant model obtained by including the first 10 flexible modes and 4 aerodynamic
lag terms (L = 4, B = 0.2, B, =0.4, B3 =0.6, B4 = 0.8). The actuator
dynamics and turbulence models (egs. (27) and (28)) remained the same. The
Nyquist diagram of this 65th-order plant plus the 4th-ordexr controller of equa-
tion (30) at the design dynamic pressure is presented in figure 14. The gain
margins are -5.4 dB at 62 rad/sec and +12.0 dB at 310 rad/sec. The phase mar-
gins are -62° at 45 rad/sec and +57° at 82 rad/sec. These margins are slightly
better than those with the 25th-order plant model (fig. 8(b)). The stability
margins at lower dynamic pressures (not presented) are similar to those of fig-
ure 11. The dynamic-pressure root locus of the 65th-order plant plus the 4th-
order controller is presented in figure 15. All the modes not included in the
original 25th-order plant used for the controller design are found to be stable.
The flutter dynamic pressure is 8.85 kPa. Beyond this point, the controller
complex pole (filter mode) is unstable at a frequency of 40 rad/sec.

COMPARISON WITH TRUNCATED AND RESIDUALIZED CONTROL LAWS

Reduced-order control laws can also be obtained from optimal control theory
results by truncation and residualization methods. In the truncation method,
the low-order controller is obtained by partitioning the optimal full-state
feedback and Kalman estimator gain matrices and retaining only the part of the
optimal controller corresponding to the key states and their first derivatives.
In the residualization method (ref. 6), a first-order correction is added by
retaining the static part of the controller corresponding to the rest of the
states. The present method can be considered a reoptimization of the truncated
control law. For a comparison of the performance of the control laws obtained
by these three related methods, 4th-order control laws are also designed by
truncation and residualization methods using identical base data and noise
intensities (R, = 0.00001) for the 25th-order plant at the design dynamic pres-
sure. The Nyquist diagrams of the plant plus the full-order controller and of
the plant plus 4th-order truncated, residualized, and reoptimized control laws
are presented in figure 16. The corresponding stability margins are presented
in table II. For the truncation method, the gain margins are -10.3 dB and
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/
+6.5 dB, and the phase margins are -17° and +57°. For the residualization
method, the gain margins are -7.1 dB and +6.0 dB, and the phase margins are
-559 and +38°. The shapes of the corresponding Nyquist diagrams (figs. 16 (b)
and (c¢)) indicate that the phase and positive gain margins would decrease
rapidly with increase in gain. In comparison, for the present method, the over-
all stability margins are better and closer to the full-order optimal result.
Since the corresponding Nyquist diagram is nearly circular around (-1,0)
(fig. 16(d)), the stability margins are less sensitive to change in gain.

The root-mean-square (rms) values of the steady-state responses 6rms'
A

6rms'
sented in table II along with the corresponding values using the full-order
optimal LQG controller, for comparison. These values are computed using Ry =0
and correspond to the steady-state response due to a 1 m/sec rms gust. The

and Efms using the control laws designed by the three methods are pre-

present method yields the lowest &, ., while the lowest &, is obtained by
the residualization method. The truncation method provides the lowest Erms'

In general, except in the truncation method, the control surface rms responses
are of the same order.

CONCLUSIONS

A method of synthesizing reduced-order optimal feedback control laws for a
high-order system is developed. A design algorithm which employs a nonlinear
programing technique and an analogy with the LQG solution is presented. An
input-noise adjustment procedure is used to improve the stability margins of
the system. This general method is applied to the synthesis of an active
flutter-suppression control law for a wind-tunnel model of an aeroelastic wing.
The important results of this study are the following:

1. The present method can be used to synthesize optimal, reduced-order,
robust feedback control laws for a high-order plant without truncating
the plant model order. It is applicable to a multi-input, multi-output
system.

2. Application of this method to a 25th-order plant representing an aero-
elastic wing model provides a 4th-order flutter-suppression control
law which is shown by analysis to increase the flutter dynamic pres-
sure by at least 44 percent (at Mach of 0.9) with good stability mar-
gins while minimizing the control input.

3. The numerical results indicate that the input-noise adjustment procedure
of Doyle and Stein is capable of improving the stability margins of
the system with a reduced-order controller, although the theoretical
proof exists only for a full-order controller.

16




4. The present reoptimization algorithm appears to provide better control
laws than those obtained by truncation and residualization methods.

Langley Research Center

National Aeronautics and Space Administration
Hampton, VA 23665

June 17, 1981
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APPENDIX A

STATE-SPACE EQUATIONS

The detailed derivation of egquations (3) to (6) are presented in this
appendix.

Plant Equation

Let us define the vectors

oKe
0

B]G stg
{} v (m =1, 2, .« . ., L) (a3)
s +-—— B sE s +-—— Bm)

and also define the following matrices
c 21~ 'w
1+ o) [,

Pa] + o(59) R,
Kl =+ q[?*oL

=1
=
1l

o
1
~

(a4)

J

Separate the control surface and flexible mode components by partitioning the

the matrices E&J and &%J as

[gn] B HS‘IJF | [}A‘n]c] (n=0,1, 2) (a5)
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5] - [l § (1 ennan e

Then by using the definitions in equations (Al) to (A6), equation (1) can be
written as shown in matrix equation (A7a) on page 21. With zero initial condi-
tions assumed, equation (A7a) is denoted by equation (3a) in the time domain:

G = ) + [of | 3] (a7b)

Sensor Output Equation

An accelerometer sensor output equation can be expressed as

) = [®]§iF} (28)

where Bﬂ is a matrix of modal amplitudes at the sensor location. Using the

definition in equation (A2) and the second row of equation (A7a), equation (A8)
can be written as

(x* )
Fl

- mfe)--wl [ B e in
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) I A R A 1 r
xgl 0 q[ﬁl]F -—2—‘181 0 0
AL J
x% 0 qFJP 0 -%XBZ 0
jaﬂ ] 0 qFJF 0 0 -%XBi
W, TR
0 FJC 0 E 0
0 FJC 0 E 0
] 0 FJC 0 : 0

TC

Matrix equation (A7a)
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or
{y} = [Hﬂ () o+ [H; ! H;‘]{u*} (A9b)
Thus, equation (3b) is obtained.

Actuator and Turbulence State Equations

The actuator transfer function can be expressed in state-space form as

2.} = [mr] () + Broter)
c > (A10)
c caol {(*5)

EC J

are the dynamics matrix, the control distribution

Yy
Il

where A* , B* , and C*
ac ac ac
matrix, and the output matrix of the actuator and {u} is the actuator command
input. The order of the actuator state vector is the order of the denominator
in the actuator transfer function. A model of the turbulence is used whose
power spectral density approximates the power spectral density of the gust
velocity. The model of the turbulence can be expressed as a Markov's process

{ka} [Aé] {xa} + [:Bé {w}\

? (A11)

Y
Il

op =[] {=t}
c J

where Aé, Bé, and Ca are the dynamics, control distribution, and output

matrices of the turbulence and {w} is a white noise process.
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Plant State Equation

Equations (Al0) and (All) can be combined and written as

* 1 x*

C
{u*} ol BRI (A12)
0 1 C *
G XG
x* A%x ot o x* B* o {}
ac ac ac ac u
= (=== ' == o + |-== 1 == = (A13)
. * * *
x* o AG xG o BG w
G
X*
By augmenting the vector {x*} with ;%9 and substituting equa-
G
tion (Al2) into equation (A7b), equations (3a) and (Al3) can be written as
< % | GQkC* | G*C* * |
X e+, %1% | 5% | o o |(,
x* = |0 A¥* 0 x* + |B* 0 - (Al14)
ac vV _Tac_ v T ac _ac ' V'
. o ! 0] ' A% 0O | B*
xé . . G x* , G
By defining
X*
*
x = { *ac (A15)
s
*
e
1 cxCx | G*xC*%
px, GCac | 276
F=Z(0 , a* |, O (al6)
ac
a1V T " I Tawx
0 0 AG
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0 o_
= * =
Cu = 1_329 Cw = ° (a17)
*
0 BG

one can denote equation (Al4) by equation (4).

Sensor Output Equation in State Variables

Substituting equation (Al2) into equation (A9b), one obtains

X*
{y} = [Hi ' Hxcx ! H;CE:’ xt \ + {v} (A18)
1 }
*
e

where a white noise process {v} is added to represent measurement
uncertainties.

Defining

= x | *O* | g¥*c*
H = E{l ! HECK IH:,ch] (A19)

and using the definition of the state vector {}25} in equation (Al5) results
in equation (5). In a similar manner any design output vector {yb:> can be

written in terms of <XS> to obtain equation (6).
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GRADIENT OF PERFORMANCE INDEX

Minimization of the performance index J defined by equation (15) in which
the covariance matrix X5 satisfies the Lyapunov equation (11) can be treated
as a constrained optimization problem. Egquation (15) can be written as

o
1]

T T T
tr[?axa + M\F X, + XF~ + G_R G, )] (B1)

~

where A is a Lagrange multiplier matrix. Define a matrix P as

;4
B 1 AJ (Ng+M) X (No+M)

o>
|

(B2)

~

The necessary conditions for minimization of equation (Bl) with respect to P
are then equation (11) (from dJ/9A = 0) along with

_9J _ T T
0 = —axa = [Qa + Fa A+ AFa1 (B3)
' T
) oF oF
0= 2L - |2 X, + N - X, + Xa —— + —é;——CSaRaGaT> (B4)
P 9P oP, . 9P 9P
ij ij i3 1] 1j

~

N
where Pij is a nonzero element of P. Since Qa is symmetric, equation (B3)
leads to Lyapunov equation (20) which is dual to equation (11) and can be solved
to obtain A. Thus, A is also symmetric. Equation (B4) represents
M(M + N, + No) equations for BJ/BPij. Since equation (B4) cannot be solved

explicitly for P, one can use it to express the gradients of J with respect

to Pij as follows. Since R Qgr and A are symmetric, the trace proper-

al

ties of compatible matrix products can be used to write equation (B4) as

3Q oF 9G
CRANY X, +2——xA+2—""RrgG Ta (B5)
3P, . 9P, . 3P, . 9p,, 2
ij ij i3 ij

subject to equation (11).
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In

order to express Fj, Qa’ and G, explicitly in terms of P, rewrite

A ANAN -\
F, = F + GPH
A ATATA AA ?
= +
Q =0 +HPQPH (B6)
Gy = G, + GPI p,
where
~
A F 10 A Gu 10
F=1610 =167 1
(Ng+M) X (Ng+M) (Ng+M) X (Ng+M)
~ ~ Gy
H = [g : %] G = [éy | 8}
(No+M) X (Ng+M) (Ng+M) X (Nyy+Ng)
. f (B7)
|
5 - 22 o T
2 0 t 0 2 0 10
(Ng+M) X (Ng+M) (No+M) X (No+M)
- 53]
(Ng+M) X (Nyg+No) J
One can now write equation (B5) as
ATATA An
B(H PQ PH) A A
oJ 2 3 (GP) {~ 9 (GP) [~ T
= tr|T X + 2 i )(HXaA> + 2 — ) IRaGa A
oP, . opP, | oP, . apP, .
1] 1] 1] 1]
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APA A
. 3<P 0 P) R ~n ~n
9T _ plg® N 2/ Hx, + 2(HxaA)3(GP) + 2(IRaGaTA>B(GP)
aPij 3Pij BPij BPij

/\TA ~
NG PN (S PN = PR
tr ———7735——(HxaHT) + 2 §—Elfi——(A T) + 2 §—§}£i——(A T) (B8)

— XoH GaRaI
s oP, . P, .
1] 1] 1]

Collecting the derivatives with respect to all the gij's results in

BJ A ~AfAn AT Am AT A Am
5§.= 2 Q2p<gxaﬂ ) + G (AXaH ) + G (AGaRaI ) (B9)

Note that in equation (B9), both the left and right terms represent
(Ng + M) X (No + M) matrices. Hence, the evaluation of the trace for

derivatives with respect to each ﬁij is no longer required. By expand-

ing equation (B9) by using equations (12), (19), and (B7), equations (16)
to (18) are obtained.
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SIGNIFICANCE OF A, B, AND C FOR FULL-ORDER CONTROLLER

For a full-order controller (i.e., M =Ng and R = I), if we set

A =F - BH + GuC (c1)

and use B and C as design variables, then equations (26) can be expressed as

%g— = AC(BRV - PHT) + (ASCT + Ac)(xs - XSC)HT (C2)
g%'= (QQC + GuTS)Xc + GuT(AS + AscT>(Xsc - Xc) (C3)
where
P = (xs + X, - Xgo - XSCT> = E[eeT] (C4)
T
S = <As + Ao + Mg + Agg ) (C5)
e = (Xc - Xs> (C6)

Here P 1is recognized as the steady-state covariance matrix of the estimation
error e. From equations (11) and (20), one can show that P and S satisfy
a set of Lyapunov equations as follows.

Partition equation (11) into four Ng X Ng blocks, i.e.,

' T |
[% : Gu%] Xs | Xgc + Xg 1 §sc {% | 99?] + gygggy_ (R N 0 (ch
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Equation (C7) represents four sets of matrix equations:

T T
FXg + GuCXge +  XgF + XSCCTGuT + GWRWGWT =0 (C8)
T_T T
FXge + GuCXs + XGH BT + X . A =0 (C9)
T

BHXg + AXgq. + XSCTFT + XCCTGuT =0 (Cl0)

BHXgc + AXc + XSCTHTBT + XCAT + BRVBT =0 (C11)
Similarly, equation (20) can be expressed in a partitioned form as

g, cl T A A A A I g,C Hpy T !
F_o,SuS| f s v odsef | 2s v UscliE_ | Sul| [BpT9FD o | o g
BH a AT A ATV A, jIBE A 0 , T

scC \ SC ] c ch

Because of symmetry, equations (C9) and (Cl0) represent the same set of equa-
tions. By substituting equation (Cl) for A and subtracting both (C9) and (C1l0)
from the sum of equations (C8) and (Cl1l), all GuC terms cancel and the follow-
ing equation is obtained:

(F - BH)P + P(F - BH)  + GuR,Gy + BRyB. = 0 (c13)

By substituting equation (Cl) for A and adding all four sets of matrix equa-
tions represented by equation (C12), all BH terms cancel and the following
equation is obtained:

(F + GuC)TS +s(F + 6yC) + Hp Q1Hp + CQaC = 0 (C14)

From equations (C2) and (C3), it is easily seen that dJ/dB = 0 and dJ/4C = 0
provided that

B = PH Ry © = Bg (C15)
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1. T, =
c=-9,"1g,s = ¢ (C16)

and provided that

(xc - Xsc) =0 (c17)

(AC + ASCT) =0 (c18)

which is indeed true as shown below.

Subtracting equation (Cll) from equation (C9), one obtains

(F - BH)(XSC - xc) + (xsc - xc)(F + GuC)T + (PHT - BRV>BT =0 (C19)

Adding the last two sets of partitioned equations (Cl2), one obtains
T T T T T
(F - BH) (Asc + Ac> + <Asc + Ac><F + GuC> + C (Gu S + ch> =0 (C20)

If equations (Cl5) and (Cl6) are satisfied, then equations (C1l9) and (C20) are
homogeneous equations in (Xsc - XC) and (ASCT + Ac), respectively, and can have
only a trivial solution provided that (F - BH) and -(FP + GuC}) have no eigen-

values in common. Hence equations (Cl7) and (C18) are satisfied. Equa-
tions (Cl5) and (C1l6) for B and C are recognized as the Kalman estimator
gain and optimal full-state feedback gain matrices, respectively, as given by

the LOG solution.

It is also recognized that equation (C17) implies that

E[%xc?] =0 (c21)

i.e., the estimation error and the estimated states are uncorrelated, an impor-
tant result in optimal filtering and prediction. Substituting equations (C15)
and (Cl6) into equations (C13) and (Cl4), respectively, results in the steady-
state Riccati equations for computing P and S:

FP + PF - PHIR, "HP + G R,Gy. = 0 (c22)
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T -1, T T _
F'S + SF - SGQy G, S + Hp QHp = 0 (c23)

Also from equations (C4) and (Cl7), the state covariance matrix is given by
Xg = P + X¢ (c24)

and the performance index given by equation (15) becomes

J = tr[(HDTQlHD + chzc) Xo + (HDTQ]_HD> P] (c25)
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DISCUSSION OF ESTIMATION ERROR

For M = Ng, the states x. of the controller discussed in this paper are
optimal estimates of the plant states =Xg as shown in appendix C. By analogy,
for M < Ng, the controller states X, hay be treated as an estimate of M key
plant states denoted by x3. Let the remaining Ng - M plant states be denoted
by x3. Rearranging and partitioning x5 and equations (4) and (5) accord-
ingly, one can rewrite them as

. X1 F11 'Fi2 | %1 Gur 'Gyy | [ u
xg = {77 ) = =T =mE == [ =S (- (D1)
X5 For 1 Fo2 | (X2 Gu2 1 Gyo | W
X1
y = [%1' Hé] -= ) +v (D2)
1 X
2
where
X; = Rxg Gy1 = RG,
_ T _ T
Fll = RFR Hl = HR
Gyl = RGu

Now defining the error e in the partial state estimation as
e = x, - Xy = x, - Rx (D3)

and subtracting the first M equations in equation (D1l) from equation (7), one
obtains the error dynamics equation as

e = Ax, - (Fqq - BHy)x; - (Fy, - BHy)X, - G jyu - G qw + Bv (D4)
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If we let
A = Fy, - BH + G;C (D5)
then equation (D4) becomes
e = (Fy) - BHj)e - (Fyp = BHy)Xy = Gup(u = Cxg) - Gw + Bv (D6)

In the usual case, (u - Cx,) is set to zero as per equation (8). In the present
design, to improve the robustness of the reduced-order controller, (u - Cx.)

is replaced by a fictitious input white noise process n, of intensity Ry
(ref. 10). Thus,

e = (Fy; - BHl)e - (F12 - BH2)x2 - GuiMy ~ Gy¥ + BV (D7)

Thus 1, appears as an additional noise parameter in the error dynamics. The
underlined terms contribute to additional estimation error apart from the white
noise inputs. These terms are referred to as observation spillover terms in
reference 16, in which use of a prefilter is suggested to eliminate them.

If (Fll - BHl) is stable in equation (D7) and Fqy (eq. (10)) is stable

for a specific choice of B and C, then e 1is stable and asymptotically con-
verges to a steady-state value.
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SYMBOLS

A controller dynamics matrix

A;c dynamics matrix of actuator

AE dynamics matrix of turbulence

[gé:,[gé] matrices for polynomial fit (eg. (2))
:gn:c, ﬁm:c control surface component of [gn] and [ng
o~ A T ~ ~
_}n;F, Bm-F modal component of [én] and [3%]
A - A T ~ A~
.ﬁn_G'[?mL gust component of [An] and [Bé]

B controller input matrix

B;c control distribution matrix of actuator
Bé control distribution matrix of turbulence
BO Kalman estimator gain matrix

C controller output matrix

C;c output matrix of actuator

Ca output matrix of turbulence

Co optimal full-state feedback gain matrix

c reference chord length

[P?] structural damping matrix

e estimation error vector

F plant dynamics matrix

Fgy augmented dynamics matrix

Fi11/Fir--- components of partitioned matrix F
F* dynamics matrix for egquation (1)

F matrix defined in equations (B7)

Ga augmented noise input matrix
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[K]

plant input matrix

components of partitioned matrix Gu (eq. (D))
gust input matrix

components of partitioned matrix G, (eq. (Dl))

matrices defined in equations (B7)

input matrices in equations (3a) and (A7)

gravitational acceleration

sensor output matrix

design output matrix

components of partitioned matrix H (eg. (D2))
matrix defined in equations (B7)

measurement matrices in equations (3b) and (A9)
unity matrix

matrix defined in equations (B7)

performance index

generalized stiffness matrix

number of aerodynamic lag terms

scale of turbulence

order of controller

generalized mass matrix

number of control inputs

number of design outputs

number of outputs or sensors

number of plant states

number of plant noise inputs
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P Kalman estimator error covariance matrix
B matrix defined in equation (B2)

§1j nonzero elements of 5 matrix

Qa augmented symmetric weighting matrix

Ql design output symmetric weighting matrix

control input symmetric weighting matrix

Q2
[6]’[Q]G s-plane approximation of unsteady aerodynamics matrices

Q1+95 matrices defined in equations (B7)
q dynamic pressure

de flutter dynamic pressure

R key state selection matrix

R, augmented noise intensity matrix

fictitious input-noise intensity matrix
measurement noise intensity matrix

plant noise intensity matrix

L &L

S full-state feedback optimal solution matrix

s Laplace variable

t time

U input covariance matrix (steady state)

u control input vector

u* input vector for equation (1)

A free~stream velocity

v measurement noise vector

w plant noise vector

b o covariance matrix of augmented state vector (steady state)
Xs’Xc'Xsc components of partitioned matrix X, (eq. (12))
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X augmented state vector

a
Xa controller state vector
Xg augmented plant state vector
Xq vector of key plant states to be estimated
X5 vector of plant states not estimated
x* state vector for equation (1)
X;c actuator state wvector
X;l generalized coordinate vector
x§2 time derivative of generalized coordinate vector
xé turbulence state vector
xél,...,ng aerodynamic states
\% measurement output vector
Yp design output vector
z accelerometer output
Bm aerodynamic lag
§ control surface deflection
é control surface deflection rate
6c commanded control surface deflection
n augmented noise vector
Ny fictitious input-noise vector
A Lagrange multiplier matrix
As’Ac’Asc components of partitioned matrix A (eq. (19))
EC generalized coordinate vector for control surface deflection
EF generalized coordinate vector for flexible modes
EG gust velocity vector
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Owg root-mean-square gust velocity

¢ matrix of modal amplitudes at sensor location
Subscript:
rms root mean sguare

Mathematical notation:
E[ ] expected value of

tr[ 1] trace of matrix

defined as

[ 1 matrix

{1} vector

vector or matrix transpose

inverse of square matrix

Dots over symbols denote differentiation with respect to time.
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TABLE I.- SUMMARY OF RESULTS FOR 25TH-ORDER PLANT

[Ql = 0.0001, Q, = 50000, H =Hy, R, =1.0, R, =1.0, q=7.66 kpa]

Steady-state

Order Design Optimal responses with Gain margin ' Phase margin Flutter
of input noise performance R, =0 dynamic
icontroller, intensity, index, s : 5 T ‘ pressure,
M R, J Urmss Orms¢ ' Ormss Zrms s ‘ ‘ q¢, kPa
: ‘ . | : . d,
| deg deg deg/sec'g units B |rad/sec; dB 'rad/sec deg.rad/sec deg rad/sec
! ! ;
Full 0 1.64 | 11.8] 11.8j 842.5 | 5.35 |-4.3| 66 j 2.2} 132 |-44 53 18 91
.00001 51.3 21.5| 18.0| 795.3 | 3.12 |-5.7| 60 18.9| 616 |-47| 46 65 82 9.0
.0001 454.0 37.6| 19.4| 843.7 | 2.83 [-6.1 60 21.5| 860 [~51| 44 72 84
4 0 1.77 12.6| 12.6| 696.8 | 4.88 ([-4.1| 63 2.6 120 |[-41 52 22 92
.00001 59.5 17.2{ 17.0]| 756.0 | 3.52 |-5.0| 60 12.3 314 (-46| 47 53 83 8.7
.0001 574.9 18.1] 18,0} 757.1 3.46 |-5.0| 61 12.3 305 |-51| 46 55 82
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TABLE II.- COMPARISON OF RESULTS WITH CONTROLLERS DESIGNED BY VARIOUS METHODS FOR 25TH-ORDER PLANT

l:Ql = 0.0001, Q, = 50000, H

= HD' Rw = 1.0,

R, = 1.0, q = 7.66 kPa:l

Steady-state
: . . . : Ph £qi
Controller Order . De51g? Optimal responses with Gain margin ase margin
design of input noise| performance Ry =0
methgd controller,| intensity, index, s R .
rms s rms Zrms ¢ dB d 4 | d da
M R, J deg |degssec|qg units dB |rad/sec rad/sec|deg |rad/sec|deg |rad/sec
LOG Full 0.00001 51.3 .0 795.3 3.12 -5.7 60 18.9 6l6 -47 46 65 82
Truncation 4 .00001 110.9 32.6 [1263.7 2.39 -10.3 59 6.5 254 ' -17 38 57 129
Residualization 4 .00001 85.5 17.1 665.4 2. -7.1 62 6.0 le4 -55 46 38 97
| |
Reoptimization 4 .00001 59.5 .0 756.0 3.52 -5.0 60 112.3 314 -46" 47 ''53 83
(present
method) ‘
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Figure 1l.- Block diagram of the control scheme.
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Obtain full-state feedback and Kalman gain matrices,

Bo and Cg

Y —

Select key states j«

)

Initialize control law
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Compute augmented
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law
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Solve
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\
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Figure 2.- Block diagram of design algorithm.
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Figure 4.- Open-loop dynamic pressure root locus at Mach 0.9.
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(b) R, = 0.00001.

Figure 5.- Nyquist diagrams of plant plus full-order control law

(arrows indicate increasing frequency). q = 7.66 kPa.
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Figure 5.~ Concluded.
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Figure 6.- Closed-loop dynamic-pressure root locus using full-order control law.
R, = 0.00001.
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Figure 7.- Typical convergence pattern of performance index using a conjugate
gradient algorithm. R, = 0.00001.
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Figure 8.- Nyquist diagrams of plant plus fourth-order control law

(arrows indicate increasing frequency).

g = 7.66 kPa.
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Figure 9.- Closed-loop dynamic-pressure root locus using fourth-order

control law. R, = 0.00001.
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Figure 10.- Bode plot of plant plus full-order and fourth-order control
laws at gq = 7.66 kPa. Ry = 0.00001.
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Figure 12.- Variation of steady-state root-mean-square (rms) responses with dynamic pressure
for fourth-order control law. R, = 0.00001.
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model). q = 7.66 kPa (arrows indicate increasing

frequency). R, = 0.00001l.
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Figure 16.- Nyquist diagram of plant plus full-order control law and 4th-order

control law designed by various methods for 25th-order plant.
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